磁阻效应(磁阻效应实验报告)
磁阻效应
本文内容来自于互联网,分享磁阻效应(磁阻效应实验报告)
磁阻效应 | Top |
[url]概述
发展经历
应用
实验原理 [/url]
概述
磁阻效应(Magnetoresistance Effects)是指某些金属或半导体的电阻值随外加磁场变化而变化的现象。同霍尔效应一样,磁阻效应也是由于载流子在磁场中受到洛伦兹力而产生的。在达到稳态时,某—速度的载流子所受到的电场力与洛伦兹力相等,载流子在两端聚集产生霍尔电场,比该速度慢的载流子将向电场力方向偏转,比该速度快的载流子则向洛伦兹力方向偏转。这种偏转导致载流子的漂移路径增加。或者说,沿外加电场方向运动的载流子数减少,从而使电阻增加。这种现象称为磁阻效应。若外加磁场与外加电场垂直,称为横向磁阻效应;若外加磁场与外加电场平行,称为纵向磁阻效应。一般情况下,载流子的有效质量的驰豫时时间与方向无关,则纵向磁感强度不引起载流子偏移,因而无纵向磁阻效应。
发展经历
材料的电阻会因为外加磁场而增加或减少,则称电阻的变化称为磁阻(MR)。磁阻效应是1857年由英国物理学家威廉·汤姆森发现的,它在金属里可以忽略,在半导体中则可能由小到中等。从一般磁阻开始,磁阻发展经历了巨磁阻(GMR)、庞磁阻(CMR)、穿隧磁阻(TMR)、直冲磁阻(BMR)和异常磁阻(EMR)。
应用
目前,磁阻效应广泛用于磁传感、磁力计、电子罗盘、位置和角度传感器、车辆探测、GPS导航、仪器仪表、磁存储(磁卡、硬盘)等领域。
磁阻器件由于灵敏度高、抗干扰能力强等优点在工业、交通、仪器仪表、医疗器械、探矿等领域得到广泛应用,如数字式罗盘、交通车辆检测、导航系统、伪钞检别、位置测量等。
其中最典型的锑化铟(InSb)传感器是一种价格低廉、灵敏度高的磁阻器件磁电阻,有着十分重要的应用价值。
2007年诺贝尔物理学奖授予来自法国国家科学研究中心的物理学家艾尔伯·费尔和来自德国尤利希研究中心的物理学家皮特·克鲁伯格,以表彰他们发现巨磁电阻效应的贡献。
实验原理
一定条件下,导电材料的电阻值R随磁感应强度B的变化规律称为磁阻效应。如图1所示,当半导体处于磁场中时,导体或半导体的载流子将受洛仑兹力的作用,发生偏转,在两端产生积聚电荷并产生霍耳电场。如果霍耳电场作用和某一速度载流子的洛仑兹力作用刚好抵消,那么小于或大于该速度的载流子将发生偏转,因而沿外加电场方向运动的载流子数量将减少,电阻增大,表现出横向磁阻效应。若将图1中a端和b端短路,则磁阻效应更明显。通常以电阻率的相对改变量来表示磁阻的大小,即用Δρ/ρ(0)表示。其中ρ(0)为零磁场时的电阻率,设磁电阻在磁感应强度为B的磁场中电阻率为ρ(B),则Δρ=ρ(B)-ρ(0)。由于磁阻传感器电阻的相对变化率ΔR/R(0)正比于Δρ/ρ(0),这里ΔR=R(B)-R(0),因此也可以用磁阻传感器电阻的相对改变量ΔR/R(0)来表示磁阻效应的大小。
实验证明,当金属或半导体处于较弱磁场中时,一般磁阻传感器电阻相对变化率ΔR/R(0)正比于磁感应强度B的平方,而在强磁场中ΔR/R(0)与磁感应强度B呈线性关系。磁阻传感器的上述特性在物理学和电子学方面有着重要应用。
处于磁场中的磁阻器件和一个外接电阻串联,接在恒流源的分压电路中,通过对R的调节可以调节磁阻器件中电流的大小,电压表联接1或2可以分别监测外接电阻的电压和磁阻器件的电压。
阻效应是指某些金属或半导体的电阻值随外加磁场变化而变化的现象。同霍尔效应一样,磁阻效应也是由于载流子在磁场中受到洛伦兹力而产生的。在达到稳态时,某—速度的载流子所受到的电场力与洛伦兹力相等,载流子在两端聚集产生霍尔电场,比该速度慢的载流子将向电场力方向偏转,比该速度快的载流子则向洛伦兹力方向偏转。这种偏转导致载流子的漂移路径增加。或者说,沿外加电场方向运动的载流子数减少,从而使电阻增加。这种现象称为磁阻效应。若外加磁场与外加电场垂直,称为横向磁阻效应;若外加磁场与外加电场平行,称为纵向磁阻效应。一般情况下,载流子的有效质量的驰豫时时间与方向无关,则纵向磁感强度不引起载流子偏移,因而无纵向磁阻效应。
目前,磁阻效应广泛用于磁传感、磁力计、电子罗盘、位置和角度传感器、车辆探测、GPS导航、仪器仪表、磁存储(磁卡、硬盘)等领域。